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Introduction

Cirrhosis Is the final stage of chronic liver disease and presents substantial diagnostic

challenges due to its multifactorial complexity. Traditional diagnostic methods often lack RES“":S 1.0- 1.0-
accuracy and sensitivity for early detection. Recent advances in multi-omics integration
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algorithm. Selected features from each omics 7 & Deoxycholic acid [ Fig 3. AUROC-Based Model Performance Across Multi-Omics Datasets
' ' ' S A aurodeoxycholic aci _ - .
layer were us.ed to train machine Ieammg g M ! 1 ;1 ;’l" i ;‘ (A) Performance of four machine learning models (SVM, Random Forest, MLP,
models Iincluding Support Vector Machine, 33 Integration of Selected N Importance and 1D CNN) trained on microbial species data. (B) Performance of the same
Random Forest, 1D Convolutional Neural 7, reares Al |8 models trained on KO gene data. (C) Performance on metabolite data. (D)
Network, and Multi-Layer Perceptron. Model %S, Lithocholic acid - Perform_ance on the combined multi-omics dataset (species + KO genes +
performance was evaluated using 10-fold < DL-4-Hydroxyphenylactic acid ; metabolites).
cross-validation with AUROC as the evaluation : S
- Optimal 'Hl 8-Hydroxyquinoline AUROC Heatmap by Model and Dataset
m etrl C. Multi-Omics Model Azelaic acid
Finally, selected features from all omics types Y Meantmportance svM 0.78
were integrated to build an optimal multi-omics Fig 1. Workflow of machine learning- Fig 2. ML-based Boruta Feature Selection for Multi-Omics Biomarkers
model, which was also evaluated using the based multi-omics biomarker discovery (A) Summary diagram of selected features from Boruta algorithm, including 40 - RF 0.77
i i microbial species, 64 KEGG Orthology (KO) genes, and 24 metabolites. (B) Top 10 S
same machine learning framework. ICrODIal specl gy g€l P =
microbial species selected based on feature importance. (C) Top 10 KO genes S e
- selected based on feature importance. (D) Top 10 metabolites selected based on
COI‘CIUS|O|‘S feature importance. e 07s
T_his stu_dy highlights the contribution of multi_-omics datg integra_tion N improvin_g References
diagnostic accuracy and underscores the potential of machine learning approaches In & &
: c - : : : : : .y : S
Identifying key biomarkers associated with cirrhosis. Our findings suggest that multi- | 1. Ning, L., Zhou, Y. L., Sun, H., Zhang, Y., Shen, C., Wang, Z., ... & Hong, J. (2023). Microbiome and Datacet ©
- - - - - - - - - - bolome features In Inflammatory bowel disease via multi-omics Integration analyses across
omics analysis provides new directions for liver disease diagnosis and personalized meta . . .
y P J P cohorts. Nature Communications, 14(1), 7135. Fig 4. Comparative Heatmap of Model AUROC Values Across

treatment strategies, offering promising avenues for future clinical applications and | 2. Gao, W, Gao, X., Zhu, L., Gao, S., Sun, R., Feng, Z., ... & Jiao, N. (2023). Multimodal metagenomic analysis
research in liver disease management reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal

cancer. Gut Microbes, 15(2), 2245562.

Single and Combined Omics Datasets




	슬라이드 1

